+

Арки относятся к распорным конструкциям, т. е. для них характерно наличие горизонтальной составляющей опорной реакции (распора).

Арки используются в качестве основных несущих конструкций зданий различного назначения. Их применяют в покрытиях промышленных, сельскохозяйственных и общественных зданий пролетом от 12 до 70 м. В зарубежном строительстве с успехом применяют арки пролетом до 100 м и более.

По статической схеме арки разделяют на трехшарнирные и двухшарнирные без ключевого шарнира:

Рисунок 8.1 – Трехшарнирная и двухшарнирная арки

По схеме опирания их делят на арки с затяжками, воспринимающими распор, и на арки без затяжек, распор которых передается на опоры.

Рисунок 8.2 – Арки без затяжки и с затяжкой


Затяжки изготавливают в большинстве случаев из арматуры или профильной стали. Возможно применение деревянных клееных затяжек, прежде всего в условиях химически агрессивных сред. Дощатоклееные затяжки повышают жесткость арок в процессе транспортирования и монтажа, а также предел огнестойкости.

По форме оси арки делят на:

- треугольные из прямых полуарок;

- сегментные, оси полуарок которых располагаются на общей окружности;

- стрельчатые, состоящие из полуарок, оси которых располагаются на двух окружностях, смыкающихся в ключе под углом.

Рисунок 8.3 – Виды арок из прямолинейных элементов:

1 – трехшарнирная ломаного очертания с опиранием на фундамент; 2 – трехшарнирная треугольная переменного сечения с опиранием на фундамент; 3 – трехшарнирная треугольная постоянного сечения с опиранием на фундамент

Рисунок 8.4 – Виды арок из криволинейных элементов:

1 – сегментная с металлической затяжкой; 2 – трехшарнирная кругового очертания;

3 – трехшарнирная кругового очертания, переменного сечения; 4 – трехшарнирная стрельчатого очертания; 5 – трехшарнирная килевидного очертания; 6 – двухшарнирная кругового очертания

По конструкции арки делятся на:

1) арки из полуарок цельного сечения (только треугольной формы);

3) арки из балок на пластинчатых нагелях (балок Деревягина);

4) кружальные арки, состоящие из двух или более рядов косяков, соединенных между собой нагелями и имеющие смещенные послойно стыки (могут быть кругового или стрельчатого очертания);

Рисунок 8.6 – Кружальная арка:

а – схема расположения косяков; б – схема работы арки; в – схема расчетных нагрузок

5) арки с перекрестной дощатой стенкой на гвоздях;

Рисунок 8.7 – Арка с перекрестной дощатой стенкой (l=20…40 м, f≥l/6)

6) клееные арки (дощатоклееные и клеефанерные).

Из перечисленных видов арок наиболее широкое применение получили клееные арки заводского изготовления. Размеры и несущая способность таких арок могут отвечать требованиям сооружения покрытий самого различного назначения, в том числе уникальных по своим размерам.

Арки остальных видов являются конструкциями построечного изготовления и сейчас практически не применяются. Дощатоклееные деревянные арки представляют собой пакет склеенных по пласти досок.

По форме оси дощатоклееные арки могут иметь любой из перечисленных выше видов, т.е. они могут быть треугольными (без затяжек – при высоте 1/2l и с затяжками – при высоте 1/6 … 1/8l в покрытиях до 24 м), пятиугольными с гнутыми участками в местах переломов осей, пологими сегментными двух- или трехшарнирными со стрелой подъема не менее 1/6l (в редких случаях 1/7…1/8l) и высокими трехшарнирными стрельчатыми из элементов кругового очертания со стрелой подъема 1/3…2/3l. Последние два вида клееных арок (сегментные и стрельчатые) рекомендуются в качестве основных.

Поперечное сечение клееных арок рекомендуется принимать прямоугольным и постоянным по всей длине. Высота поперечного сечения назначается 1/30…1/50 пролета. Толщина слоев для удобства гнутья принимается, как правило, не более 1/300 радиуса кривизны и не более 33 мм.

Клеефанерные арки имеют перспективы применения в легких покрытиях. Они, как правило, имеют треугольную форму и состоят из коробчатых клеефанерных полуарок. Такие арки имеют малую массу и позволяют получать существенную экономию древесины. Однако они требуют расхода водостойкой фанеры, являются более трудоемкими при изготовлении, чем дощатоклееные и имеют меньший предел огнестойкости.

Расчет арок производится по правилам строительной механики, причем распор пологих двухшарнирных арок при стреле подъема не более 1/4 пролета разрешается определять в предположении наличия шарнира в ключе.

Расчет арок после сбора нагрузок выполняется в следующем порядке:

1) геометрический расчет арки;

2) статический расчет;

3) подбор сечений и проверка напряжений;

4) расчет узлов арки.

Нагрузки, действующие на арку, могут быть распределенными и сосредоточенными. Постоянную равномерную нагрузку g от веса покрытия и самой арки определяют с учетом шага арок. Для арок криволинейного очертания она обычно условно считается (в запас прочности), равномерно распределенной по длине пролета, для чего ее фактическое значение умножают на отношение длины арки к ее пролету S/l.

Предварительное определение нагрузки от собственного веса проектируемой арки производится по нижеприведенной формуле в зависимости от ее типа, пролета, и величин нагрузок от собственного веса покрытия gn, снега p и других нагрузок, например нагрузок от подвесного транспортного оборудования

Коэффициент собственного веса kсв=2…4 при этом следует принимать в зависимости от пролета и величин нагрузок на арку.

Снеговую нагрузку р определяют по приложению 3 СНиП 2.01.07.-85 * (схема 1 – для треугольных арок, 2 – для арок кругового очертания, 2 / – для арок стрельчатого очертания).

Сосредоточенные, временные нагрузки Р включают в себя массу подвесного оборудования и временных нагрузок на нем.

Геометрический расчет арки заключается в определении всех размеров, координат сечений, углов наклона касательных к оси в этих сечениях и их тригонометрических функций, необходимых для дальнейших расчетов. Исходными данными при этом являются пролет l, высота f, а в стрельчатых арках также радиус полуарки r или ее высота f.

По этим данным в треугольных арках определяют длину S/2 и угол наклона полуарки α. В сегментных арках определяют радиус r = (l 2 +4f)/8, центральный угол φ из условия и длину дуги полуарки, и находят уравнение дуги в координатах с центром в левой опоре .

В стрельчатых арках определяют угол наклона α и длину l хорды, центральный угол φ и длину S/2 полуарки, координаты центра a и b, угол наклона опорного радиуса φ0 и уравнение дуги левой полуарки . Затем половину пролета арки делят на четное число, но не менее шести равных частей и в этих сечениях определяют координаты х и у, углы наклона касательных α к горизонту и их тригонометрические функции.

Опорные реакции трехшарнирной арки состоят из вертикальных и горизонтальных составляющих. Вертикальные реакции Ra и Rb определяют как в однопролетной свободно опертой балке из условия равенства нулю моментов в опорных шарнирах. Горизонтальные реакции (распор) Ha и Hb определяют из условия равенства нулю моментов в коньковом шарнире.

Определение реакций и усилий удобно производить в сечениях только одной левой полуарки в следующем порядке:

сначала усилия от единичной нагрузки справа и слева, затем от левостороннего, правостороннего снега, ветра слева, ветра справа и массы оборудования.

Изгибающие моменты следует определять во всех сечениях и иллюстрировать эпюрами.

Рисунок 8.8 – Геометрическая и расчетная схема арки

Продольные и поперечные силы можно определять только в сечениях у шарниров, где они достигают максимальных величин и необходимы для расчетов узлов. Необходимо также определять продольную силу в месте действия максимального изгибающего момента при таком же сочетании нагрузок.

Усилия от двусторонней снеговой нагрузки и собственного веса определяют путем суммирования усилий от односторонних нагрузок.

Полученные результаты сводят в таблицу усилий, по которой затем определяют максимальные расчетные усилия при основных наиболее невыгодных сочетаниях нагрузок.

Для клееных арок «Пособие» к СНиП II-25-80 расчет на прочность рекомендует выполнять при следующих сочетаниях нагрузок.

– расчетная постоянная и временная (снеговая) нагрузка на всем пролете и временная нагрузка от подвесного оборудования;

– расчетная постоянная нагрузка на всем пролете, односторонняя временная (снеговая) нагрузка на половине пролета и временная нагрузка от подвесного оборудования;

– расчетная постоянная нагрузка на всем пролете, односторонняя временная (снеговая) нагрузка, распределенная по треугольнику на l/2, и временная нагрузка от подвесного оборудования;

- расчетная постоянная и временная (снеговая) нагрузки на всем пролете и временная нагрузка от подвесного оборудования;

- расчетная постоянная нагрузка на всем пролете, временная (снеговая) на S/2 или части пролета в соответствии со СНиП «Нагрузки и воздействия» и временная нагрузка от подвесного оборудования;

- ветровая нагрузка с постоянной и остальными временными (с учетом коэффициентов сочетаний: 0,9 – для кратковременных нагрузок и 0,95 – для длительных).

Максимальные изгибающие моменты возникают обычно в сечениях вблизи четверти пролета арки при действии односторонних временных нагрузок. В треугольных арках моменты от вертикальных нагрузок уменьшаются за счет обратных моментов М от эксцентриситета е продольных сил N.

Наибольшие продольные силы возникают в сечениях вблизи опор, а наибольшие поперечные силы – в сечениях вблизи шарниров.

Усилия в подвесках затяжек возникают от подвешенных к ним грузов и от собственной массы затяжек.

Подбор сечений и проверка напряжений производятся по максимальным значениям расчетных усилий. При этом ветровые нагрузки учитываются только в тех случаях, если ветер более чем на 20 % увеличивает расчетные усилия.

Арки работают на сжатие с изгибом и рассчитываются на прочность и устойчивость в плоскости и из плоскости арки.

Подбор сечений производится методом попыток по величине изгибающего момента при условно пониженном, например, до 0,8Ru расчетном сопротивлении древесины изгибу.

При расчете арок выполняются следующие проверки

1. Проверка прочности по нормальным напряжениям

.

2. Расчет на устойчивость плоской формы деформирования .

3. Проверка устойчивости в плоскости арки выполняется по формуле

,

Расчетную длину элемента l0 следует принимать по пункту 6.25 СНиП II-25-80 в зависимости от статической схемы и схемы загружения арки.

При расчете арки на прочность и устойчивость плоской формы деформирования N и Mg следует принимать в сечении с максимальным моментом (Mmax), а расчет на устойчивость в плоскости кривизны и определение коэффициента ξ к моменту Mg нужно определять, подставляя значения сжимающей силы N0 в ключевом сечении арки.

Затяжки и подвески арок работают и рассчитываются на растяжение.

Основными узловыми соединениями трехшарнирных арок являются опорные и коньковые шарниры.

Опорные узлы арок без затяжек выполняют, как правило, в виде лобовых упоров в сочетании с металлическими башмаками сварной листовой конструкции, служащими для крепления их к опорам.

Рисунок 8.9 – Силовые воздействия в опорном узле арки

Башмак состоит из опорного листа с отверстиями для анкерных болтов и двух вертикальных фасонок с отверстиями для болтов крепления полуарок.

Рисунок 8.10 – Опорный узел

Узлы сегментных и стрельчатых арок, в которых действуют изгибающие моменты разного знака и незначительные поперечные силы, центрируются по осям полуарок, а опорный лист башмака перпендикулярен им.

Узлы треугольных арок, в которых действуют в основном положительные моменты и значительные поперечные силы, центрируются по расчетным осям, расположенным с эксцентриситетом относительно осей полуарок, а опорный башмак перпендикулярен равнодействующей вертикальной и горизонтальной опорных реакций.

Рисунок 8.11 – Опорная площадка, воспринимающая опорную реакцию без сдвига

Расчет опорного узла заключается в расчете торца полуарки на смятие от действия максимальной сжимающей силы Nсм. В сегментных и стрельчатых арках она равна максимальной продольной силе N и действует вдоль волокон. В треугольных арках она равна равнодействующей опорных усилий

и действует под углом к волокнам α, определяемым из выражения

Рисунок 8.12 – Опорный узел с шарниром:

1 – опорная часть дощатоклееной арки; 2 – фундамент; 3 – стальной башмак;

4 – стяжные болты; 5 – цилиндрический шарнир; 6 – анкерные болты

Болты крепления фасонок к полуаркам рассчитывают на действие максимальной поперечной силы Q, как симметрично изгибаемые, двухсрезные. На эту же силу рассчитываются анкерные болты на срез и смятие. Бетон фундамента рассчитывается на смятие от силы Nсм.

Опорный лист башмака работает на изгиб от действия равномерного давления лобового торца полуарки.

Опорные узлы большепролетных арок без затяжек выполняют с применением металлических шарниров качающегося типа (рисунок 8.12).

Опорные узлы клееных арок, работающих в условиях химической агрессии, могут быть выполнены при помощи стержней, одним концом вклеенных в конец полуарки, а другим – заанкерованных в фундамент.

Опорные узлы арок с затяжками

Опорные узлы клееных арок с затяжками выполняются обычно при помощи лобового упора и сварных металлических башмаков несколько иной конструкции.

Опорный лист в арках с затяжками располагается горизонтально, поэтому арки ставятся на горизонтальную поверхность опор, на которые не действует распор. Вертикальные фасонки могут опираться на опорный лист или опорный лист может размещаться между фасонками.

При опирании на бетон опорный лист удлиняют за пределы фасонок для крепления анкеров, а при опирании на деревянную стойку, фасонки опирают ниже опорного листа для крепления их к стойке болтами. Между фасонками располагается упорная диафрагма. Наклон диафрагмы и центрирование узла производятся по тем же соображениям, что и в узлах арок без затяжек.

Металлическую затяжку приваривают к фасонкам, деревянную – располагают между фасонками и крепят к ним болтами.

Рисунок 8.13 – Опорный узел с металлической затяжкой:

а – узел с лобовой передачей усилия сжатия N через торец арки; б – узел с раздельным восприятием распора и вертикальной опорной реакции

Рисунок 8.14 – Опорный узел с деревянной затяжкой:

1 – верхний пояс дощатоклееной арки; 2 – дощатоклееная стойка; 3 – деревянная затяжка;

4 – хомут из полосовой стали; 5 – стяжной болт с квадратной шайбой

При расчете опорного узла следует выполнить:

1) расчет диафрагмы на изгиб как балки, заделанной в фасонках, на давление лобового упора sд;

2) расчет опорного листа на изгиб как двухконсольной или заделанной в фасонках балки на реактивное давление фундаментов sб;

3) определить длину сварных швов крепления затяжки или число крепежных болтов – для деревянных затяжек из условия восприятия ими усилия в затяжке.

Опорные узлы дощатых арок с затяжками выполняется при помощи гвоздевых или болтовых соединений досок пояса и затяжки.

Затяжки брусчатых арок из арматурной стали пропускаются через отверстия в конце полуарки и закрепляются гайками с шайбами.

Расчет таких узлов производят на смятие торцевых обрезов.

Рисунок 8.15 – Опорный узел арки:

1 – верхний криволинейный пояс дощатоклееной арки; 2 – затяжка из круглой стали;

3 – стальная листовая подкладка переменной жесткости; 4 – стальные накладки; 5 – опора

Коньковые узлы сплошных арок малых и средних пролетов решаются в виде прямых или наклонных лобовых упоров со стальными креплениями или деревянными накладками на болтах. Сегментные и стрельчатые клееные арки центрируются в этих узлах по осям полуарок, а треугольные – с эксцентриситетами (с той же целью, что и в опорных узлах).

Лобовые упоры конькового узла рассчитывают на смятие под углом или вдоль волокон на действие продольной силы N. Количество болтов в стальных креплениях определяется в зависимости от величины поперечной силы Q с учетом угла смятия древесины под болтами. Монтажные болты рассчитывают на срез и смятие от действия той же силы Q.

Рисунок 8.16 – Коньковый узел треугольной арки

Рисунок 8.17 – Коньковый узел сегментной арки

Коньковые узлы большепролетных арок выполняются в виде стальных шарниров качающегося типа.

Рисунок 8.18 – Стальной шарнир качающегося типа

1 – верхняя часть полуарки; 2 – боковые накладки стальных сварных башмаков;

3 – болт валикового шарнира; 4 – проушины башмака; 5 – ребра жесткости башмака; 6 – стальные болты с гайками; 7 – стальные нагели

Стыки элементов арок.

Стыки клееных арок представляют собой зубчатые соединения досок по длине и стыки по пласти слоев досок между собой (в арках шириной сечения более 180 мм могут применяться еще и стыки по кромкам). Арки больших пролетов соединяются по длине жесткими стыками с помощью двусторонних накладок из профильной стали и болтов.

studopedia.org - Студопедия.Орг - 2014-2017 год. (0.102 с) .

Материалы: http://studopedia.org/14-13126.html

+

Универсальная научно-популярная онлайн-энциклопедия

АРОЧНЫЕ КОНСТРУКЦИИ

Физические свойства

Распределение сил

Суть работы арки можно представить на следующем простом примере: любая прямолинейная балка под воздействием нагрузки будет прогибаться. Происходит это потому, что под действием нагрузки в поперечных сечениях балки возникают продольные сжимающие и растягивающие напряжения. При этом в верхней части сечения действуют сжимающие напряжения, а в нижней части – растягивающие напряжения. Под действием этих напряжений верхняя часть балки сжимается, а нижняя – растягивается. В итоге, после прогиба балки, получается как бы перевернутая арка. Но если взять балку, уже имеющую некоторую кривизну оси, относительно большую по сравнению с пролетом, и перевернуть ее, то мы получим нечто, напоминающее арку. Такая теория касается арок, выполненных из цельного пласта материала. Совершенно другая идея лежит в основе арок, собранных из отдельных элементов, чаще всего, каменных. Сегменты выточены в виде усеченных клиньев, так что, опираясь друг на друга, они последовательно предают нагрузку, идущую сверху, соседнему сегменту, пока та вся не перейдет в опоры. Так что, если материал арки и опор имеет соответствующую прочность, то при повышении нагрузки арка лишь становится плотнее и крепче, это увеличивает срок ее службы и улучшает устойчивость.

Расчет арок

Расчет арок производится по правилам строительной механики. Начинают с замера и учета всех нагрузок, таких как масса самой арки, снеговая и ветровая нагрузки, а также прочие нагрузки, связанные с использованием помещения. После чего можно переходить к расчетам, которые выполняются в следующем порядке:

геометрический расчет арки;

подбор сечений и проверка напряжений;

расчет узлов арки.

Нагрузки

Приходится учитывать, что нагрузки, действующие на арку, могут распространяться равномерно, на всю площадь поверхности, а могут быть сосредоточенны в отдельных местах. Например, точно постоянной и равномерной нагрузкой можно считать давление от массы покрытия и самой арки. К ним чаще всего добавляют условно полученный запас прочности, равномерно распределенной по длине пролета. Для определения массы арки используют коэффициенты собственной массы kсв = 2…4, который зависит от массы покрытия gn, снега p, других нагрузок и присутствует в выражении

Снеговую нагрузку р так же условно считают равномерно распределенной по длине пролета покрытия и определяют по нормам нагрузок и воздействий. Стрельчатые арки в этом случае принимают за треугольные, а для сегментных арок вводят определенные коэффициенты. Ветровую нагрузку q и считают приложенной нормально к поверхности покрытия и определяют так же по нормам нагрузок и воздействий. При этом для упрощения расчета криволинейные эпюры этой нагрузки можно заменять прямолинейными, а стрельчатые так же заменяют треугольными. Сосредоточенные, временные нагрузки Р включают в себя массу подвесного оборудования, или оборудования, находящегося на покровах пролета, и временных нагрузок на нем.

Геометрический расчет арки

Он заключается в определении всех размеров, углов и их тригонометрических функций полуарки, необходимых для дальнейших расчетов. Исходными данными при этом являются пролет l, высота f, а в стрельчатых арках также радиус полуарки r или ее высота f.

Статический расчет

Если рассматривать трехшарнирную арку, то опорные реакции состоят из вертикальных и горизонтальных составляющих. Причем вертикальные реакции определяют так же, как в свободно опертой балке, из условия равенства нулю моментов в опорных шарнирах. Горизонтальные реакции, которые называют распором, определяют из условия равенства моментов нулю в коньковом шарнире. Продольные и поперечные силы можно определять только в сечениях у шарниров, где они достигают максимальных величин, что необходимо для расчетов узлов. Полученные результаты сводят в таблицу усилий, по которой затем определяют максимальные расчетные усилия при основных наиболее не выгодных сочетаниях нагрузок.

Подбор сечений и проверка напряжений производятся по максимальным значениям расчетных усилий. При этом ветровые нагрузки учитываются только в тех случаях, если ветер более чем на 20% увеличивает расчетные усилия. Так же производится ряд проверок, на прочность, устойчивость к деформациям.

После глобальных расчетов выполняется анализ узлов арки, как опорных, так и замковых, если они есть. Производится проверка узла на смятие и устойчивость к горизонтальным нагрузкам.

Виды арок, дополнительные элементы

Все это происходит, потому что на опорах появятся не только вертикальные реакции, но и горизонтальные, которые называются распором. Именно распор в каждом сечении арки создает момент, противоположный по знаку моменту от внешних нагрузок, что и позволяет их существенно уменьшить, а в некоторых случаях свести к нулю. В случае чрезвычайно больших сил распора между опорами добавляют затяжку, которая проходит через весь пролет, и принимая на себя излишки распора, укрепляет, таким образом, все перекрытие. Затяжка может располагаться в центре опор, а может быть подпольной, или приподнятой. Сами опоры так же могут иметь абсолютно различную форму и функцию. В 40–50 годы 19 века, вскоре после изобретения проката металла и заклепочных соединений для несущих конструкций, стали применяться стальные арки. Это позволило отказаться от тяжелых, дорогих и более трудоемких каменных арок. Появились новые возможности закрепления и усовершенствования арочных конструкций. Для уменьшения различных колебаний, вызванных осадкой опор, сменой распределения нагрузки, изменениями температуры или других условий, влияющих на материал, в арку включают шарниры. Их добавляют в месте соединения арки с опорами. Как правило, посредине арки (в самом высоком месте) добавляется еще один шарнир. Этот центральный шарнир называется замком арки. По этому принципу возникает деление на трехшарнирные, двухшарнирные и бесшарнирные. У трехшарнирных арок , по сравнению с бесшарнирными есть преимущества: они статически определимы, то есть все их реакции опор могут быть определены уравнениями равновесия, они нечувствительны к неравномерным осадкам опор и колебаниям температуры. Но вместе с этим наличие шарниров увеличивает вес и сложность конструкции. Исходя из перечисленных выше плюсов и минусов, чаще предпочтение отдают двушарнирным аркам. Независимо от всевозможных усовершенствований арки имеют длину пролета и высоту (стрелу) подъема. Пролет и стрела подъема обычно определяются технологическими и архитектурными требованиями. В зависимости от соотношения стрелы подъема (f) к пролету (l) арки можно разделить на пологие (1/10 < f /l < ¼) и высокие (или подъемистые) (1/4 < f /l < 1). Так же арка имеет определенное очертание – кривую арки. Такой кривой является кривая давления, которая характеризуется тем, что от заданной нагрузки в любом сечении арки изгибающие моменты равны нулю. При этом необходимо учитывать вес самой арки. В случае с пологой аркой нагрузку принимают равномерно распределенной по пролету, так что кривая давления представляет квадратную параболу, но для простоты построения ее принимают за дугу окружности. У подъемистых арок нагрузку собственного веса принимают распределенной равномерно по длине дуги. Помимо веса самой конструкции сооружения на арку приходятся и нагрузки внешних сил, например ветра. Если это играет большую роль, то после составления кривых давления побочных сил кривую давления арки строят по возможной средней кривой. Исходя из всех расчетов, а так же архитектурных и технических требований арки бывают совершенно разных форм и размеров, они могут быть с затяжкой и без нее, с опорами различных видов и из весьма разнообразных материалов.

а) двухшарнирная (ось арки описывается уравнением окружности);

б) трехшарнирная, статически определимая арка;

в) арка с затяжкой на опорах;

г) арка с затяжкой выше опор;

д) арка сквозного сечения (такую арку можно рассматривать как две отдельные арки с затяжками);

е) арка переменного сечения;

ж) параболаобразная арка (ось арки описываемые гиперболой);

з) стрельчатая арка (ось арки описывается двумя уравнениями окружности), окружности пересекаются в ключе или замке арки;

Материалы: http://www.krugosvet.ru/enc/arkhitektura/arochnye-konstruktsii?page=0,1

+

Применив профильную трубу для монтажа ферм, можно создавать конструкции, рассчитанные на высокие нагрузки. Легкие металлоконструкции подходят для возведения сооружений, обустройства каркасов под дымоходы, монтажа опор для кровли и козырьков. Вид и габариты ферм определяют в зависимости от специфики использования, будь то домашнее хозяйство или промышленная сфера. Важно грамотно выполнить расчет фермы из профильной трубы, иначе конструкция может не выдержать эксплуатационные нагрузки.

Навес из арочных ферм

Виды ферм

Металлические фермы из трубопроката отличаются трудоемкостью в монтаже, но они экономичнее и легче конструкций из сплошных балок. Профилированная труба, которую изготавливают из круглой путем горячей или холодной обработки, в поперечном разрезе имеет вид прямоугольника, квадрата, многогранника, овала, полуовала или плоскоовальную форму. Удобнее всего монтировать фермы из квадратных труб.

Ферма – это металлоконструкция, в состав которой входит верхний и нижний пояс, а также решетка между ними. К элементам решетки относятся:

  • стойка – располагается перпендикулярно к оси;
  • раскос (подкос) – устанавливается под наклоном к оси;
  • шпренгель (вспомогательный подкос).
Конструктивные элементы металлической фермы

Фермы в первую очередь предназначены для перекрытия пролетов. За счет ребер жесткости они не деформируются даже при использовании длинных конструкций на сооружениях с большими пролетами.

Изготовление металлических ферм производится на земле или в производственных условиях. Элементы из профильных труб обычно скрепляются между собой при помощи сварочного аппарата или клепок, могут использоваться косынки, парные материалы. Чтобы смонтировать каркас навеса, козырька, крыши капитальной постройки, готовые фермы поднимают и крепят к верхней обвязке согласно разметке.

Для перекрытия пролетов применяются различные варианты ферм из металла. Конструкция может быть:

Треугольные фермы, изготовленные из профильной трубы, используются как стропила, в том числе для монтажа простого односкатного навеса. Металлоконструкции в виде арок пользуются популярностью благодаря эстетичности внешнего вида. Но арочные конструкции требуют максимально точных расчетов, поскольку нагрузка на профиль должна распределяться равномерно.

Треугольная ферма для односкатной конструкции

Особенности конструкций

Выбор конструкции ферм навесов из профильной трубы, козырьков, стропильных систем под кровлей зависит от расчетных эксплуатационных нагрузок. По количеству поясов различаются:

  • опоры, составные части которой формируют одну плоскость;
  • подвесные конструкции, в состав которых входит верхний и нижний пояс.

В строительстве можно использовать фермы с различным контуром:

  • с параллельным поясом (самый простой и экономичный вариант, собирается из идентичных элементов);
  • односкатные треугольные (каждый опорный узел характеризуется повышенной жесткостью, за счет чего конструкция выдерживает серьезные внешние нагрузки, материалоемкость ферм небольшая);
  • полигональные (выдерживают нагрузки от тяжелого настила, но сложны в монтаже);
  • трапецеидальные (схожи по характеристикам с полигональными фермами, но этот вариант более простой по конструкции);
  • двухскатные треугольные (применяются для устройства крыши с крутыми скатами, характеризуются большой материалоемкостью, при монтаже много отходов);
  • сегментные (подходят для сооружений со светопрозрачной кровлей из поликарбоната, монтаж усложнен из-за необходимости изготавливать дугообразные элементы с идеальной геометрией для равномерного распределения нагрузок).
Очертания поясов ферм

В соответствии с величиной угла наклона типовые фермы подразделяют на следующие виды:

  1. Угол от 22 до 30 градусов. Металлоконструкция из профильной трубы для навеса или иной кровельной конструкции имеет соотношение высоты к длине как 1:5.
    • для пролетов малой и средней длины чаще всего используют треугольные фермы из труб небольшого сечения – они легкие и при этом жесткие;
    • при длине пролета свыше 14 метров, применяют раскосы, установленные сверху вниз, а по верхнему поясу крепят панель длиной 150-250 см, чтобы получить двухпоясную конструкцию с четным количеством панелей;
    • для пролетов длиной более 20 метров, чтобы исключить прогиб фермы, требуется установка подстропильной конструкции, связанной опорными колоннами.
  2. Отдельно стоит рассмотреть ферму Полонсо, которая выполнена в виде двух треугольных систем, соединенных между собой через затяжку. Это дает возможность не монтировать длинные раскосы в средних панелях, за счет чего заметно снижается общий вес конструкции. Стропила Полонсо
  3. Угол от 15 до 22 градусов. Высота и длина типовой фермы соотносятся как 1:7. Конструкция применяется для перекрытия пролетов длиной до 20 метров. При увеличении высоты конструкции относительно указанных пропорций, правила требуют сделать нижний пояс ломаным.
  4. Угол менее 15 градусов. Лучше, если применяемый каркас для крыши постройки или для навесов состоит из трапециевидных металлоконструкций. Фермы металлические сварные данной формы в своем составе имеют короткие стойки, за счет которых конструкция противостоит продольному изгибу. Металлоконструкции из труб, предназначенные для односкатных кровель с углом наклона от 6 до 10 градусов, должны быть асимметричными. Чтобы определить их высоту, длину пролета делят на 7, 8 или 9 в зависимости от особенностей проекта.

Основы расчета

Перед тем как рассчитать ферму, необходимо подобрать подходящую конфигурацию крыши, учитывая габариты сооружения, оптимальное количество и угол наклона скатов. Также следует определить, какой контур поясов подойдет для выбранного варианта крыши – при этом принимаются во внимание все эксплуатационные нагрузки на кровлю, включая осадки, ветровую нагрузку, вес людей, производящих работы по обустройству и обслуживанию навеса из профильной трубы или кровли, монтажу и ремонту оборудования на крыше.

Чтобы выполнить расчет фермы из профильной трубы, необходимо определить длину и высоту металлоконструкции. Длина соответствует расстоянию, которое должна перекрывать конструкция, при этом высота зависит от запроектированного угла наклона ската и выбранного контура металлоконструкции.

Расчет навеса в итоге сводится к тому, чтобы определить оптимальные промежутки между узлами фермы. Для этого требуется рассчитать нагрузку на металлоконструкцию, выполнить расчет профильной трубы.

Неправильно рассчитанные каркасы кровли несут угрозу для жизни и здоровья людей, поскольку тонкие или недостаточно жесткие металлоконструкции могут не выдержать нагрузок и разрушиться. Поэтому рекомендуется доверить расчет металлической фермы профессионалам, знакомым со специализированными программами.

Если принято решение выполнить вычисления самостоятельно, необходимо воспользоваться справочными данными, в том числе о сопротивлении трубы на изгиб, руководствоваться СНиП. Правильно рассчитать конструкцию без соответствующих знаний сложно, поэтому рекомендуется найти пример расчета типовой фермы нужной конфигурации и подставить в формулу необходимые значения.

На этапе проектирования составляется чертеж фермы из профильной трубы. Подготовленные чертежи с указанием размеров всех элементов упростят и ускорят изготовление металлоконструкций.

Чертеж с размерами элементов

Рассчитываем ферму из стальной профильной трубы

Рассмотрим, как правильно рассчитать металлоконструкцию, чтобы выполнить каркас кровли или навес из профильной трубы. Подготовка проекта включает несколько этапов:

  1. Определяется размер пролета постройки, который требуется перекрыть, выбирается форма крыши и оптимальный угол наклона ската (или скатов).
  2. Подбираются подходящие контуры поясов металлоконструкции с учетом назначения постройки, формы и размеров крыши, угла наклона, предполагаемых нагрузок.
  3. Рассчитав приблизительные габариты фермы, следует определить, можно ли изготовить металлоконструкции в заводских условиях и доставить их на объект автотранспортом, или сварка ферм из профильной трубы будет выполнена непосредственно на стройплощадке по причине большой длины и высоты конструкций.
  4. Далее требуется рассчитать габариты панелей, основываясь на показателях нагрузок при эксплуатации кровли – постоянных и периодических.
  5. Чтобы определить оптимальную высоту конструкции в середине пролета (Н), используют следующие формулы, где L – длина фермы:
    • для параллельных, полигональных и трапецеидальных поясов: Н=1/8×L, при этом уклон верхнего пояса доложен составлять приблизительно 1/8×L или 1/12×L;
    • для металлоконструкций треугольной формы: Н=1/4×L либо Н=1/5×L.
  6. Угол установки раскосов решетки составляет от 35° до 50°, рекомендуемое значение 45°.
  7. На следующем этапе следует определить расстояние между узлами (обычно оно соответствует ширине панели). Если длина пролета превышает 36 метров, требуется вычисление строительного подъема – обратно погашаемого изгиба, который воздействует на металлоконструкцию при нагрузках.
  8. На основании измерений и вычислений готовится схема, согласно которой будет вестись изготовление ферм из профильной трубы.
Изготовление конструкции из профильной трубы Чтобы обеспечить необходимую точность расчетов, используйте строительный калькулятор – подходящую специальную программу. Так вы сможете сопоставить свои и программные расчеты для того, чтобы не допустить большого несоответствия в размерах!

Арочные конструкции: пример расчета

Чтобы сварить ферму для навеса в виде арки, применяя профильную трубу, необходимо правильно рассчитать конструкцию. Рассмотрим принципы расчета на примере предполагаемого сооружения с пролетом между опорными конструкциями (L) 6 метров, шагом между арками 1,05 метра, высотой фермы 1,5 метра – такая арочная ферма выглядит эстетично и способна выдержать высокие нагрузки. Длина стрелы нижнего уровня арочной фермы при этом составляет 1,3 метра (f), а радиус окружности в нижнем поясе будет равен 4,1 метра (r). Величина угла между радиусами: а=105.9776°.

Схема с размерами арочного навеса

Для нижнего пояса длину профиля (mн) рассчитывают по формуле:

mн – длина профиля из нижнего пояса;

π – постоянная величина (3,14);

R – радиус окружности;

α – угол между радиусами.

В результате получаем:

Узлы конструкции располагают в участках нижнего пояса с шагом 55,1 см - допускается округлить значение до 55 см, чтобы упростить сборку конструкции, но увеличивать параметр не следует. Расстояния между крайними участками требуется рассчитать индивидуально.

Если длина пролета составляет менее 6 метров, вместо сварки сложных металлоконструкций можно воспользоваться одинарной или двойной балкой, выполнив сгиб металлического элемента под выбранным радиусом. В этом случае расчет арочных ферм не требуется, но важно правильно подобрать сечение материала, чтобы конструкция выдерживала нагрузки.

Профильная труба для монтажа ферм: требования к расчету

Чтобы готовые конструкции перекрытий, в первую очередь крупногабаритные, выдерживали проверку на прочность на протяжении всего срока эксплуатации, трубопрокат для изготовления ферм подбирается на основании:

  • СНиП 07-85 (взаимодействие снеговой нагрузки и веса элементов конструкций);
  • СНиП П-23-81 (о принципах работы со стальными профилированными трубами);
  • ГОСТ 30245 (соответствие сечения профильных труб и толщины стенок).

Данные из указанных источников позволят ознакомиться с видами профильных труб и выбрать оптимальный вариант с учетом конфигурации сечения и толщины стенок элементов, конструктивных особенностей фермы.

Навес для авто из трубопроката

Фермы рекомендуется изготавливать из трубопроката высокого качества, для арочных конструкций желательно выбрать легированную сталь. Чтобы металлоконструкции были устойчивы к коррозии, сплав должен включать большой процент углерода. Металлоконструкции из легированной стали не нуждаются в дополнительной защитной окраске.

Полезные советы по монтажу

Зная, как сделать решетчатую ферму, можно смонтировать надежный каркас под светопрозрачный навес или кровлю. При этом важно учитывать ряд нюансов.

  • Самые прочные конструкции монтируются из металлопрофиля с сечением в виде квадрата или прямоугольника за счет наличия двух ребер жесткости.
  • Основные компоненты металлоконструкции крепятся между собой с использованием спаренных уголков и прихваток.
  • При стыковке деталей каркаса в верхнем поясе требуется использовать двутавровые разносторонние уголки, при этом соединять следует по меньшей стороне.
  • Сопряжение частей нижнего пояса крепят с установкой равносторонних уголков.
  • Стыкуя основные части металлоконструкций большой длины, применяют накладные пластины.

Важно представлять, как сварить ферму из профильной трубы, если металлоконструкцию требуется собрать непосредственно на строительной площадке. Если нет навыков ведения сварочных работ, рекомендуется пригласить сварщика с профессиональным оборудованием.

Сварка элементов фермы

Стойки металлоконструкции монтируют под прямым углом, раскосы – под наклоном в 45°. На первом этапе нарезаем из профильной трубы элементы в соответствии с размерами, указанными на чертеже. Собираем на земле основную конструкцию, проверяем ее геометрию. Затем варим собранный каркас, используя уголки и накладные пластины, где они требуются.

Обязательно проверяем прочность каждого сварного шва. От их качества и точности расположения элементов зависит прочность и надежность сваренных металлоконструкции, их несущая способность. Готовые фермы поднимают наверх и крепят к обвязке, соблюдая шаг установки согласно проекту.

Материалы: http://vseokrovle.com/elementy/220-fermy-iz-profilnoj-truby.html